

Cierro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Grid computing simulation of superconducting vortex lattice in superconducting magnetic nanostructures

M. Rodríguez-Pascual¹, D. Pérez de Lara², E.M. González², A. Gómez², A.J. Rubio-Montero¹, R. Mayo^{1,2}, J.L. Vicent²

¹ CIEMAT – ² UCM 4th Iberian Grid Infrastructure Conference Braga, May 24th-27nd 2010

2010.es Presidencia Española

Outline

Introduction

Centro de Investigaciones

Energéticas, Medioambientales y Tecnológicas

Ciemot

- The DiVoS code and its Physics
- Implementation
 - Complete DiVoS
 - Optimised DiVoS
 - Division of the problem
 - Architecture of the proposed solution
- Results
 - Testbed
 - Performance
- Conclusions

- Superconducting (SC) Vortices Lattices (VL) are modified if nanodefects are embedded in SC samples
 - Engineering applications
 - SC amorphous Mo_3Si (a- Mo_3Si) and Nb films on arrays of Ni nanodots

- Several effects reported
 - Induction by arrays made with different materials
 - Different diameters of the pinning centres
 - Arrays with different symmetries
 - Softening the strength of the intrinsic random pinning potentials

- Experimental VL
 - $400\ x\ 600\ nm^2$ and $400\ x\ 400\ nm^2$
 - The simplest case has Matching Field (MF) equal to 1

- Appliance of magnetic fields perpendicularly
- VL accommodates to the nanostructured arrays
- Vortices are moved because of Lorentz Force
- An Electric Field is then originated due to the velocity of the lattice

Centro de Investigaciones

Energéticas, Medioambientales y Tecnológicas

Ciemot

• Magnetoresistance of superconducting thin films with periodic arrays of pinning centres show minima when the vortex lattice matches the unit cell of the array

- Dinámica de Vórtices Superconductores (DiVoS) code
 - Fortran95
 - Study the VL dynamics in a Type-II SC
 - Simulates the observed phenomena by increasing the MF
 - The number of vortices depending on their position
 - Vertex counts for 1/4
 - Edge counts for 1/2
 - Inner counts for 1

......

600 nm

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

- Dinámica de Vórtices Superconductores (DiVoS) code
 - Vortex-Vortex interaction

$$U_{ij}(\mathbf{r}_{ij}) = \frac{\phi_0^2}{8\pi^2\lambda^3} K_0\left(\frac{\mathbf{r}_{ij}}{\lambda}\right)$$

nes ientales

- Dinámica de Vórtices Superconductores (DiVoS) code
 - Retrieves the lowest Energy configuration
 - Any MF configuration will have *MF* solutions
 - Running from MF 1 to $2 \cdot (MF 1)$
 - The space of solutions is

$$C_{(a \times b), V_p} = \frac{(a \times b)!}{V_p!((a \times b) - V_p)!}$$

Matching Field	Number of solutions
2	$2.380\cdot 10^5$
3	$2.832\cdot 10^{10}$
4	$2.247\cdot 10^{15}$
5	$1.337\cdot 10^{20}$
6	$6.364\cdot 10^{24}$
7	$2.524\cdot 10^{29}$

- Dinámica de Vórtices Superconductores (DiVoS) code
 Two versions
 - Complete \rightarrow All possible combinations are calculated
 - Optimized \rightarrow Heuristics are used
 - Symmetry $\rightarrow \Sigma r_{ij}$ is constant
 - Minimum Distance between vortices equal to a/V_p

- Division of the problem
 - The evaluation of each solution is independent from the rest
 - Any vortex can be placed on a (X, Y) position in an axb lattice
 - S_p independent partitions with s_p subtasks
 - The different positions satisfy:

$((X \cdot a + Y) \bmod S_p) = s_p$

running the *a* dimension

DiVoS

- Architecture
 - Static compilation of 32 bits-X86 enabled version
 - Bessel function by NAG Library¹
 - Submission of jobs by $GridWay^2$
 - Phyton script for analysing partial results

¹ http://www.nag.co.uk/numeric/FL/FLdocumentation.asp
² E. Huedo *et al.* Software-Practice & Experience 34, 631 (2004)
Braga, IberGrid 2010, May 24th-27nd 2010

- Testbed
 - Local cluster
 - Euler
 - Grid
 - EGEE Infrastructure

Results

- Euler characteristics
 - 144 blades with 2 Xeon 5450 quad-core 3.0 GHz
 - 2 GB RAM/core
 - Double Infiniband 4X DDR
 - $R_{peak} = 13.82$ Tflops ; $R_{max} = 10.98$ Tflops
 - Queue policy
 - 104 free slots
 - Serial jobs < 70%

Name of the queue	Walltime [h]
pruebas	00:10:00
expres	02:30:00
normal	100:00:00
eterna	240:00:00

Results

- EGEE Infrastructure
 - 29 sites
 - 16371 CPU
 - Free < 6010
 - Limitation of number of jobs per user
 - 90 < Number of slots < 110

Cierro de Investigaciones Energéticas, Medioambientales y Tecnológicas

- A physical result as an example...
 - MF = 3
 - Two inner vortices
 - Four vertex vortices
 - $-400 \ge 600 \text{ nm}^2$

$$- U_{ij} (r_{ij}) = 5.83 \cdot 10^{-28} \text{ T}^2 \text{m}^2$$

• Comparison

	Version	Slots	Acc. Hours	Speedup
Euler	Optimized	104	1601	86
Grid	Optimized	[90,110]	2998	22

The speedup is calculated from a hypothetical serial version

• Heuristics

- Not all of them are useful
- "Sum of distances" evaluation on a 60 x 40 lattice and Euler

MF	V_p	S_{Com}/S_{Opt}	Speedup
2	5	1.7	1.0
3	6	13.1	1.3
4	7	25108.2	7.8

- Calculation of U_{ij} from intermediate previous positions
 - Number of candidates is reduced in a 90%...
 - ...but execution time increases in a factor of 4 !!

Conclusions •

Centro de Investigaciones

Tecnológicas

- First approach for obtaining vortex lattice dynamics
 - Local clusters and Grid
- Improvements •
 - Faster migration of Grid jobs (10')
 - New heuristics (SC & Solid State Physics)
 - New lattice geometries
 - Abrikosov
 - Surrounding lattices
 - New interactions
 - Vortex-pinning
 - Temperature

Centro de Investigaciones y Tecnológicas

THANK YOU